Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Cells ; 12(23)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067116

RESUMEN

Many solid tumors are characterized by a dense extracellular matrix (ECM) composed of various ECM fibril proteins. These proteins provide structural support and a biological context for the residing cells. The reciprocal interactions between growing and migrating tumor cells and the surrounding stroma result in dynamic changes in the ECM architecture and its properties. With the use of advanced imaging techniques, several specific patterns in the collagen surrounding the breast tumor have been identified in both tumor murine models and clinical histology images. These tumor-associated collagen signatures (TACS) include loosely organized fibrils far from the tumor and fibrils aligned either parallel or perpendicular to tumor colonies. They are correlated with tumor behavior, such as benign growth or invasive migration. However, it is not fully understood how one specific fibril pattern can be dynamically remodeled to form another alignment. Here, we present a novel multi-cellular lattice-free (MultiCell-LF) agent-based model of ECM that, in contrast to static histology images, can simulate dynamic changes between TACSs. This model allowed us to identify the rules of cell-ECM physical interplay and feedback that guided the emergence and transition among various TACSs.


Asunto(s)
Colágeno , Neoplasias , Animales , Ratones , Colágeno/metabolismo , Colágenos Fibrilares/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias/metabolismo
2.
Braz. dent. sci ; 26(4): 1-12, 2023. ilus, tab
Artículo en Inglés | LILACS, BBO - Odontología | ID: biblio-1516483

RESUMEN

Objective: to investigate the effect of two natural cross-linkers on microtensile bond strength (µTBS) and evaluate their influence on the durability of the resin dentin bonds. Material and Methods: the Moringa oleifera and Centella asiatica plant extracts were qualitatively tested with high-performance thin layer chromatography (HPTLC) for the presence of phenols. The phenolic content ranged from 27 to 30 gallic acid equivalents (GAE), µg/mg of dry weight. After etching, two concentrations (5% and 1%) of these two extracts were prepared and used as pretreatment liners on dentin. They were applied for a min. After restoration with resin composite, dentin resin beams were prepared. The study groups were 5% Moringa, 1% Moringa 5% Centella 1% Centella, and control (without cross-linker application). For each group, half of the samples underwent µTBS testing after 24 hours, while the remaining half were immersed in artificial saliva to assess the bond's longevity after 6 months of ageing. Statistical analysis was performed using one-way ANOVA followed by Tukey's post hoc test. Results: both 5% and 1% Moringa showed a significant difference (p<0.05) compared to the other groups at both intervals. However, after ageing, the specimens in the control and 1% Centella groups resulted in a significant decrease in µTBS. Conclusion: overall, both concentrations of Moringa (5% and 1%) were effective in stabilising the bond during both intervals.(AU)


Objetivo: investigar o efeito de dois reticuladores naturais na resistência de união (µTBS) à microtração e avaliar sua influência na durabilidade da adesão da resina à dentina. Material e Métodos: extratos das plantas Moringa oleifera e Centella asiatica foram qualitativamente testados através de cromatografia em camada fina de alta performance (HPTLC) para a presença de fenóis. O conteúdo fenólico alcançou entre 27 a 30 equivalentes de ácido gálico (GAE), µg/mg de peso seco. Após o condicionamento, duas concentrações (5% e 1%) dos extratos foram preparadas e utilizadas como forros de pré-tratamento em dentina. Eles foram aplicados por um minuto. Após a restauração com resina composta, palitos de dentina e resina foram preparados. Os grupos foram 5% Moringa, 1% Moringa, 5% Centella, 1% Centella e controle (sem aplicação de reticulador). Para cada grupo, metade das amostras foram submetidas ao teste µTBS após 24 horas, enquanto a outra metade foi imersa em saliva artificial para avaliar a longevidade adesiva após 6 meses de envelhecimento. Foi realizada análise estatística através de ANOVA 1-fator, seguido do teste post hoc de Tukey. Resultados: ambas as concentrações de 5% e 1% de Moringa demonstraram diferença significativa (p<0.05) comparadas aos outros grupos em ambos os intervalos. No entanto, após o envelhecimento, os espécimes dos geupos controle e 1% de Centella resultaram em uma redução significativa de µTBS. Conclusão: no geral, ambas as concentrações de Moringa (5% e 1%) foram efetivas em estabelecer a adesão em ambos os intervalos (AU)


Asunto(s)
Humanos , Recubrimientos Dentinarios/análisis , Resinas Compuestas/análisis , Reactivos de Enlaces Cruzados/análisis , Centella/química , Moringa oleifera/química , Flavonoides/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Traumatismos de los Dientes , Colágenos Fibrilares/metabolismo , Polifenoles/química
3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293432

RESUMEN

The observed differences in the structure of native tissue and tissue formed in vitro cause the loss of functional activity of cells cultured in vitro. The lack of fundamental knowledge about the protein mechanism interactions limits the ability to effectively create in vitro native tissue. Collagen is able to spontaneously assemble into fibrils in vitro, but in vivo, other proteins, for example fibronectin, have a noticeable effect on this process. The molecular or fibrillar structure of collagen plays an equally important role. Therefore, we studied the interaction of the molecular and fibrillar structure of collagen with fibronectin. Atomic force and transmission electron microscopy showed that the presence of fibronectin does not affect the native structure and diameter of collagen fibrils. Confocal microscopy demonstrated that the collagen structure affects the cell morphology. Cells are better spread on molecular collagen compared with cells cultured on fibrillar collagen. Fibronectin promotes the formation of a large number of focal contacts, while in combination with collagen of both forms, its effect is leveled. Thus, understanding the mechanisms of the relationship between the protein structure and composition will effectively manage the creation in vitro of a new tissue with native properties.


Asunto(s)
Fibronectinas , Células Madre Mesenquimatosas , Fibronectinas/metabolismo , Colágenos Fibrilares/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno Tipo I/metabolismo
4.
Adv Sci (Weinh) ; 9(28): e2202552, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35957513

RESUMEN

Fibrillar collagens promote cell proliferation, migration, and survival in various epithelial cancers and are generally associated with tumor aggressiveness. However, the impact of fibrillar collagens on soft tissue sarcoma behavior remains poorly understood. Unexpectedly, this study finds that fibrillar collagen-related gene expression is associated with favorable patient prognosis in rhabdomyosarcoma. By developing and using collagen matrices with distinct stiffness and in vivo-like microarchitectures, this study uncovers that the activation of DDR1 has pro-apoptotic and of integrin ß1 pro-survival function, specifically in 3D rhabdomyosarcoma cell cultures. It demonstrates that rhabdomyosarcoma cell-intrinsic or extrinsic matrix remodeling promotes cell survival. Mechanistically, the 3D-specific collagen-induced apoptosis results from a dual DDR1-independent and a synergistic DDR1-dependent TRPV4-mediated response to mechanical confinement. Altogether, these results indicate that dense microfibrillar collagen-rich microenvironments are detrimental to rhabdomyosarcoma cells through an apoptotic response orchestrated by the induction of DDR1 signaling and mechanical confinement. This mechanism helps to explain the preference of rhabdomyosarcoma cells to grow in and metastasize to low fibrillar collagen microenvironments such as the lung.


Asunto(s)
Receptor con Dominio Discoidina 1 , Rabdomiosarcoma , Canales Catiónicos TRPV , Apoptosis , Colágeno , Receptor con Dominio Discoidina 1/genética , Receptor con Dominio Discoidina 1/metabolismo , Colágenos Fibrilares/metabolismo , Humanos , Integrina beta1/metabolismo , Microambiente Tumoral
5.
SLAS Technol ; 27(4): 267-275, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35584761

RESUMEN

Cell dissemination during tumor development is a characteristic of cancer metastasis. Dissemination from three-dimensional spheroid models on extracellular matrices designed to mimic tissue-specific physiological microenvironments may allow us to better elucidate the mechanism behind cancer metastasis and the response to therapeutic agents. The orientation of fibrillar collagen plays a key role in cellular processes and mediates metastasis through contact-guidance. Understanding how cells migrate on aligned collagen fibrils requires in vitro assays with reproducible and standardized orientation of collagen fibrils on the macro-to-nanoscale. Herein, we implement a spheroid-based migration assay, integrated with a fibrillar type I collagen matrix, in a manner compatible with high throughput image acquisition and quantitative analysis. The migration of highly proliferating U2OS osteosarcoma cell spheroids onto an aligned fibrillar type I collagen matrix was quantified. Cell dissemination from the spheroid was polarized with increased invasion in the direction of fibril alignment. The resulting area of cell dissemination had an aspect ratio of 1.2 ± 0.1 and an angle of maximum invasion distance of 5° ± 44° relative to the direction of collagen fibril alignment. The assay described here can be applied to a fully automated imaging and analysis pipeline for the assessment of tumor cell migration with high throughput screening.


Asunto(s)
Colágeno Tipo I , Neoplasias , Biomimética , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Matriz Extracelular , Colágenos Fibrilares/metabolismo
6.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140771, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35306228

RESUMEN

Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.


Asunto(s)
Colágeno , Tirosina , Animales , Arginina , Sitios de Unión , Adhesión Celular , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Péptidos/química , Porcinos , Tirosina/análogos & derivados
7.
Eur J Pharmacol ; 914: 174681, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34871556

RESUMEN

Secreted protein acidic and rich in cysteine (SPARC), an extracellular matrix (ECM) protein, was recently shown to induce collagen deposition through the production of a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) in the aging heart. ADAMTS1 regulates ECM turnover by degrading ECM components, and its excessive activation contributes to various pathological states, including fibrosis. The present study investigated the pathophysiological regulation and role of SPARC and ADAMTS1 in renal fibrosis using uninephrectomized rats treated with deoxycorticosterone acetate (DOCA, 40 mg/kg/week, subcutaneously) and salt (1% in drinking water). The administration of DOCA and salt gradually and significantly elevated systolic blood pressure during the 3-week treatment period, induced proteinuria, decreased creatinine clearance, and increased NADPH oxidase-derived superoxide production, malondialdehyde concentrations, and monocyte chemoattractant protein-1 and osteopontin expression in the kidneys. Glomerulosclerosis, fibrillar collagen deposition, and transforming growth factor-ß expression increased in a time-dependent manner, and SPARC and ADAMTS1 expression showed a similar pattern to these changes. The angiotensin II type-1 receptor blocker losartan suppressed the overexpression of SPARC and ADAMTS1, and an in vitro exposure to angiotensin II induced the production of both SPARC and ADAMTS1 in renal fibroblast NRK-49F cells. Knockdown of the SPARC gene with small interfering RNA reduced all forms (the 110-kDa latent and 87- and 65-kDa bioactive forms) of ADAMTS1 expression as well as collagen production. These results suggest that SPARC is induced by the renin-angiotensin system and may be a fibrogenic factor, at least in part, by producing ADAMTS1 in hypertensive renal disease.


Asunto(s)
Proteína ADAMTS1/metabolismo , Colágenos Fibrilares , Riñón , Losartán/farmacología , Osteonectina/metabolismo , Sistema Renina-Angiotensina , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Acetato de Desoxicorticosterona/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Colágenos Fibrilares/biosíntesis , Colágenos Fibrilares/metabolismo , Fibrosis/metabolismo , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Riñón/patología , Mineralocorticoides/farmacología , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Cloruro de Sodio Dietético/administración & dosificación
8.
Cell Death Dis ; 12(11): 1049, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741033

RESUMEN

Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.


Asunto(s)
Tendón Calcáneo/patología , Proteínas de la Membrana/deficiencia , Osificación Heterotópica/etiología , Osificación Heterotópica/patología , Cicatrización de Heridas , Heridas y Lesiones/complicaciones , Tendón Calcáneo/ultraestructura , Actinas/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Condrogénesis , Cicatriz/patología , Módulo de Elasticidad , Elasticidad , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestructura , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Inflamación/patología , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Viscosidad
9.
Sci Rep ; 11(1): 19520, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593884

RESUMEN

Although well investigated, the importance of collagen fibers in supporting angiogenesis is not well understood. In this study, we demonstrate that extracellular collagen fibers provide guidance cues for endothelial cell migration during regenerative angiogenesis in the caudal zebrafish fin. Inhibition of collagen cross-linking by ß-Aminopropionitrile results in a 70% shorter regeneration area with 50% reduced vessel growth and disintegrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell migration and induces formation of abnormal angioma-like blood vessels. Treatment of the Fli//colRN zebrafish line with the prodrug Nifurpirinol, which selectively damages the active collagen-producing 1α2 cells, reduced the regeneration area and vascular growth by 50% with wider, but less inter-connected, capillary segments. The regenerated area contained larger vessels partially covered by endothelial cells embedded in atypical extracellular matrix containing cell debris and apoptotic bodies, macrophages and granulocytes. Similar experiments performed in early embryonic zebrafish suggested that collagens are important also during embryonic angiogenesis. In vitro assays revealed that collagen I allows for the most efficient endothelial cell migration, followed by collagen IV relative to the complete absence of exogenous matrix support. Our data demonstrates severe vascular defects and restricted fin regeneration when collagens are impaired. Collagen I therefore, provides support and guidance for endothelial cell migration while collagen IV is responsible for proper lumen formation and vascular integrity.


Asunto(s)
Capilares , Colágenos Fibrilares/metabolismo , Neovascularización Fisiológica , Regeneración , Pez Cebra , Aletas de Animales/irrigación sanguínea , Aletas de Animales/metabolismo , Aletas de Animales/ultraestructura , Animales , Biomarcadores , Línea Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Endoteliales , Colágenos Fibrilares/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Cicatrización de Heridas/genética
10.
Am J Physiol Heart Circ Physiol ; 321(5): H976-H984, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34559578

RESUMEN

Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Ventrículos Cardíacos/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Ubiquitina-Proteína Ligasas/deficiencia , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Aorta/fisiopatología , Aorta/cirugía , Diástole , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Eliminación de Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
11.
Sci Rep ; 11(1): 19063, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561546

RESUMEN

Over the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems. In this paper, we evaluate previously described polychromatic polarization microscope (PPM) to visualize collagen fibers with an optically generated color representation of fiber orientation and alignment when inspecting the sample by a regular microscope with minor modifications. This system does not require stained slides, but is compatible with histological stains such as H&E. Consequently, it can be easily accommodated as part of regular pathology review of tissue slides, while providing clinically useful insight into stromal composition.


Asunto(s)
Colágenos Fibrilares/metabolismo , Microscopía de Polarización/métodos , Adenocarcinoma/metabolismo , Biomarcadores/metabolismo , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Masculino , Páncreas/metabolismo , Páncreas/patología , Neoplasias de la Próstata/metabolismo
12.
Biol Chem ; 402(11): 1309-1324, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34392640

RESUMEN

Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.


Asunto(s)
Biopolímeros/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Macrófagos/metabolismo , Biopolímeros/química , Matriz Extracelular/química , Colágenos Fibrilares/química , Humanos , Macrófagos/química , Cicatrización de Heridas
13.
Tissue Cell ; 73: 101612, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34371291

RESUMEN

Doxorubicin (DOX) is a well-known anti-neoplastic agent that is widely employed to treat several types of malignancies. The current study was designed to investigate the renoprotective potential of berberine (BEB) on the doxorubicin (DOX)-induced nephrotoxicity and renal fibrosis. Rats were allocated into four groups; Negative Control, DOX nephrotoxic-induced group received a single dose of DOX (20 mg/kg, i.p.), BEB-group received (50 mg/kg, p.o.) for 14 days, and co-treatment group BEB + DOX where rats were pre-treated with BEB for 10 successive days, then received a single dose of DOX on the 11th day, followed by 4 days of receiving BEB. DOX resulted in nephrotoxicity manifested by significant increments in urea, creatinine, and kidney injury molecule (KIM-1), these biochemical findings were supported with the histopathological lesions in renal tissues. Moreover, DOX provoked oxidative stress through enhancing renal malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and decreased renal catalase (CAT) activity. DOX triggered renal fibrosis represented by increased transforming growth factor beta-1 (TGF-ß1) and elevated collagen deposition. DOX stimulated apoptosis and inflammation in renal tissues as confirmed by increased immunoexpression of caspase-3 and NF-κB, respectively. These effects were alleviated by BEB co-treatment. Co-treatment with BEB markedly prohibited DOX-induced oxidative damage, inflammation, apoptosis, and fibrosis in renal tissue. Histopathological and immunohistochemical investigations showed the nephroprotective potential of BEB on renal injury, which was consistent with the biochemical findings. Accordingly, it could be concluded that the nephroprotective potential of BEB against DOX-induced kidney injury and fibrosis might be mediated by the anti-oxidant, anti-inflammatory and anti-fibrosis activities.


Asunto(s)
Berberina/uso terapéutico , Doxorrubicina/efectos adversos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Berberina/administración & dosificación , Berberina/farmacología , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Colágenos Fibrilares/metabolismo , Inflamación/patología , Enfermedades Renales/patología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas Wistar , Factor de Crecimiento Transformador beta1/metabolismo
14.
J Biomed Mater Res A ; 109(10): 1849-1857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34060700

RESUMEN

Extracellular vesicles from adipose derived stem cells (ADSCs-EVs) have shown immunomodulation and anti-photoaging effects; however, the skin barrier prevents their absorption via skin. Meanwhile, microneedle (MN) is a widely used and minimally invasive tool for dermal delivery of drugs, it also has neocollagenesis effect by creating tiny injuries and initiating wound healing process. To investigate the effect of MN combined with ADSCs-EVs on skin aging, photoaging in SKH-1 mice was induced by chronic exposure to ultraviolet radiation. Then the mice were treated following a split-dorsal scheme, in which one side had MN alone or MN + EVs treatment and the other side was left untreated. For the side treated with MN alone or MN + EVs, the epidermal thickness was decreased and the skin barrier function was enhanced compared with the untreated side. However, MN + EVs group showed the least wrinkles, the highest collagen density and the most organized collagen fibers among the three groups. The level of CD11b + cell infiltration was lower in MN + EVs group than that in the MN group at 3 day after the treatment. These results indicated that MN treatment alone could improve epidermal structure and function of photoaging skin, and a combination with ADSCs-EVs would accelerate the restoration of inflammation caused by MN and improve the content of collagen. In all, this study indicated that a combination of MN and topical applied ADSCs-EVs was a feasible and safe strategy to ameliorate photoaging, providing a new avenue for safe administration of EVs.


Asunto(s)
Tejido Adiposo/citología , Vesículas Extracelulares/metabolismo , Agujas , Envejecimiento de la Piel/efectos de la radiación , Células Madre/metabolismo , Rayos Ultravioleta , Animales , Antígeno CD11b/metabolismo , Epidermis/patología , Epidermis/efectos de la radiación , Femenino , Colágenos Fibrilares/metabolismo , Hiperplasia , Inflamación/patología , Ratones
15.
Biomed Res Int ; 2021: 2043415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969115

RESUMEN

The protective effect of aspirin against myocardial hypertrophy (MH) was studied. Model rats of pressure overload MH were prepared by abdominal aortic coarctation. Rats were randomly divided into the sham group (n = 9), MH model group (n = 9), and MH+aspirin group (n = 9), which was, respectively, divided into the 4-week group and 8-week group according to the time of intragastric administration. Arterial blood pressure and left ventricular mass index (LVMI) were measured. Changes in myocardial tissue structure were observed by HE staining, Masson staining, and reticular fiber staining. Cardiomyocyte apoptosis was detected by TUNEL assay. The levels of TNF-α, IL-10, TXA2, and PGI2 in myocardium and plasma were detected by ELISA. The arterial blood pressure in the MH model group was significantly higher than that in the 4- and 8-week sham groups, but that in the MH+aspirin group was significantly lower than that in the MH model group. At 4 and 8 weeks, the LVWI in the MH model group was significantly higher than that in the sham group, but it was significantly reduced after aspirin treatment. The myocardial cell hypertrophy was obvious, collagen fibers were proliferated, and reticular fibers were reduced in the 4- and 8-week MH model groups. Compared with the MH model groups, myocardial cells in the MH+aspirin groups were significantly reduced, the collagen fiber content was significantly reduced, and the reticular fiber content was increased. The apoptotic cardiomyocytes in the 4- and 8-week MH model groups were obviously increased. The apoptosis of myocardial cells in the MH+aspirin groups was obviously decreased. The TNF-α levels in the myocardial tissue of the 4- and 8-week MH model groups were significantly increased, while those of the MH+aspirin groups were significantly decreased. There was no significant change in the IL-10 level or PGI2 level at 4 weeks. At 8 weeks, the PGI2 level was significantly decreased in the MH model group while significantly increased in the MH+aspirin group. The TXA2 levels were significantly increased in the 4- and 8-week MH model groups and those in the 4- and 8-week MH+aspirin groups were significantly lower. Aspirin has an anti-inflammatory effect, can effectively reduce the expression of inflammatory factors, inhibit myocardial apoptosis, and has a certain protective effect against MH.


Asunto(s)
Aspirina/farmacología , Cardiotónicos/farmacología , Miocardio/patología , Animales , Apoptosis/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Colágenos Fibrilares/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Hipertrofia , Mediadores de Inflamación/metabolismo , Interleucina-10/sangre , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Tamaño de los Órganos/efectos de los fármacos , Prostaglandinas/sangre , Ratas Wistar , Tromboxano A2/sangre , Factor de Necrosis Tumoral alfa/sangre
16.
Nat Commun ; 12(1): 2328, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879793

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Colágenos Fibrilares/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Proteína Morfogenética Ósea 1/metabolismo , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutagénesis , Neoplasias Pancreáticas/genética , Procolágeno/química , Procolágeno/genética , Procolágeno/metabolismo , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 320(2): H604-H612, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306449

RESUMEN

In human heart failure and in murine hearts with left-ventricular pressure overload (LVPO), increases in fibrosis are associated with increases in myocardial stiffness. Secreted protein acidic and rich in cysteine (SPARC) is shown to be necessary for both cardiac fibrosis and increases in myocardial stiffness in response to LVPO; however, cellular sources of cardiac SPARC are incompletely defined. Irradiation and bone marrow transfer were undertaken to test the hypothesis that SPARC expression by bone marrow-derived cells is an important mediator of fibrosis in LVPO. In recipient SPARC-null mice transplanted with donor wild-type (WT) bone marrow and subjected to LVPO, levels of fibrosis similar to that of WT mice were found despite the lack of SPARC expression by resident cells. In recipient WT mice with donor SPARC-null bone marrow, significantly less fibrosis versus that of WT mice was found despite the expression of SPARC by resident cells. Increases in myocardial stiffness followed a similar pattern to that of collagen deposition. Myocardial macrophages were significantly reduced in SPARC-null mice with LVPO versus that of WT mice. Recipient SPARC-null mice transplanted with donor WT bone marrow exhibited an increase in cardiac macrophages versus that of SPARC-null LVPO and donor WT mice with recipient SPARC-null bone marrow. Expression of vascular cellular adhesion molecule (VCAM), a previously identified binding partner of SPARC, was assessed in all groups and with the exception of WT mice, increases in VCAM immunoreactivity with LVPO were observed. However, no differences in VCAM expression between bone marrow transplant groups were noted. In conclusion, SPARC expression by bone marrow-derived cells was critical for fibrotic deposition of collagen and influenced the expansion of myocardial macrophages in response to LVPO.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in LV and myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, a murine model of cardiac fibrosis induced by PO was used to demonstrate a critical function of SPARC in bone marrow-derived cells that drives cardiac fibrosis and increases in cardiac macrophages.


Asunto(s)
Presión Sanguínea , Cardiomegalia/metabolismo , Miocardio/metabolismo , Osteonectina/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Colágenos Fibrilares/metabolismo , Fibrosis , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Osteonectina/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320094

RESUMEN

Over 1.6 million Americans suffer from significant tricuspid valve leakage. In most cases this leakage is designated as secondary. Thus, valve dysfunction is assumed to be due to valve-extrinsic factors. We challenge this paradigm and hypothesize that the tricuspid valve maladapts in those patients rendering the valve at least partially culpable for its dysfunction. As a first step in testing this hypothesis, we set out to demonstrate that the tricuspid valve maladapts in disease. To this end, we induced biventricular heart failure in sheep that developed tricuspid valve leakage. In the anterior leaflets of those animals, we investigated maladaptation on multiple scales. We demonstrated alterations on the protein and cell-level, leading to tissue growth, thickening, and stiffening. These data provide a new perspective on a poorly understood, yet highly prevalent disease. Our findings may motivate novel therapy options for many currently untreated patients with leaky tricuspid valves.


Asunto(s)
Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/complicaciones , Hemodinámica , Insuficiencia de la Válvula Tricúspide/etiología , Válvula Tricúspide/metabolismo , Función Ventricular Izquierda , Función Ventricular Derecha , Adaptación Fisiológica , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Matriz Extracelular/genética , Matriz Extracelular/patología , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Oveja Doméstica , Transducción de Señal , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/fisiopatología , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/metabolismo , Insuficiencia de la Válvula Tricúspide/fisiopatología
19.
Sci Rep ; 10(1): 19065, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149218

RESUMEN

The extracellular matrix (ECM) is a complex mixture composed of fibrillar collagens as well as additional protein and carbohydrate components. Proteoglycans (PGs) contribute to the heterogeneity of the ECM and play an important role in its structure and function. While the small leucine rich proteoglycans (SLRPs), including decorin and lumican, have been studied extensively as mediators of collagen fibrillogenesis and organization, the function of large matrix PGs in collagen matrices is less well known. In this study, we showed that different matrix PGs have distinct roles in regulating collagen behaviors. We found that versican, a large chondroitin sulfate PG, promotes collagen fibrillogenesis in a turbidity assay and upregulates cell-mediated collagen compaction and reorganization, whereas aggrecan, a structurally-similar large PG, has different and often opposing effects on collagen. Compared to versican, decorin and lumican also have distinct functions in regulating collagen behaviors. The different ways in which matrix PGs interact with collagen have important implications for understanding the role of the ECM in diseases such as fibrosis and cancer, and suggest that matrix PGs are potential therapeutic targets.


Asunto(s)
Colágeno/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Proteoglicanos/metabolismo , Animales , Línea Celular , Matriz Extracelular/ultraestructura , Colágenos Fibrilares/metabolismo , Ratones , Ratas
20.
Am J Physiol Heart Circ Physiol ; 319(6): H1459-H1473, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064565

RESUMEN

Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Hipertrofia Ventricular Derecha/prevención & control , Miocardio/metabolismo , Disfunción Ventricular Derecha/prevención & control , Función Ventricular Derecha , Remodelación Ventricular , Animales , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Femenino , Colágenos Fibrilares/metabolismo , Fibrosis , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mutación , Miocardio/patología , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas Mutantes , Ratas Sprague-Dawley , Factores Sexuales , Transducción de Señal , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA